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In this paper we introduce two new Bernstein-type operators which are closely
related to each other. The former is associated with the P61ya distribution and
includes as a particular case the Bleimann-Butzer-Hahn operator. The second is
associated with the inverse beta probability distribution. Approximation properties
for both operators concerning rates of convergence, preservation of Lipschitz
constants, and monotonic convergence under convexity are given. In dealing with
the last two topics, probabilistic methods play an important role. , 1994 Academic

Press. Inc

1. INTRODUCTION

A new Bernstein-type operator acting on real functions on the semi-axis
[0, en) is defined by

x); 0, n = 1,2, "',
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where a is a nonnegative parameter and

, . ._ (n) n7~~ (x + ia) n;'~; - 1 (1 + jex)
1I".k(X,a).- k n~':6(1+x+riX) .

Note that we can write
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where E denotes mathematical expectation and U,:" is a random variable
having the Pblya-Eggenberger distribution with parameters n, x, I, a [10].
If a=O, U~,o has the binomial distribution with parameters n, x/(1 +x)
and L?, is actually the operator introduced by B1eimann, Butzer, and Hahn
[2], the approximation properties of which have been extensively studied
in the literature [2, 5, 6, 14, 15, 20]. In what follows it is simply denoted
by Ln.

Moreover, for any x> 0, a> 0, and n = 1, 2, ... , we have

where h~ denotes the probability density of the inverse beta distribution
(sometimes called beta - prime distribution) with parameters x/a, l/a
[8, 11], that is,

( (

't I)) -I ox/, - 1

h~(O):= B ~,~ (I+O)(I+x)/,' 0>0,

where B( " . ) is the beta function. Therefore, the representation

holds for any real function f on [0, ex:;).
This leads us to consider the integral operator T' defined by

P(f, x) := Ef(Z~),

(1)

(2)

where Z; is a nonnegative random variable having the density h~ above.
The expression (2) is well defined provided that I is a real measurable
function on (0, ex:;) such that E I/(Z~)I < 0Ci. If I is defined on [0, (0) we
write T'(f, 0) :=/(0).
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Observe that
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and

x
EZ'=-, 1- Ct'

O<et<l, (3)

)etx( I + x + 2etx)
D(x; a):= E(Z~ - x)- = (I _ a)(1 _ 2ed' (4)

Thus, from classical arguments, we have P(.f, x) -.I(x) (as a ----> 0) when
ever f is a real measurable bounded function on (0, c!:J) which is continuous
at x. Estimates for P(f, x) - f(x) can be obtained by using standard
methods. In particular, we have for any x> °and °< Ct < ~

IPU; x) - f(x)1 ~ 2w(.f; (D(x; a»!/2),

for each fE C(O,:X;) such that P( If I, x) < 00, and

(5)

IPCr, x) - f(x)1 ~ IF(x)1 I~:ret + 2(D(x; Ct»Ii2 w(.f'; (D(x; et»)Ii2), (6)

if, in addition, f' E CB(O, 00).

Coming back to the operator L~, it is clear that

L~f= P(L,J), (7)

for any real function f on [0, CIJ). This formula is analogous to that relating
Bernstein, beta, and Stancu-Miihlbach operators [4,17]. The following
approximation properties are easily derived from (7): If f is a non
increasing convex function on [O,CIJ), then L,,f> L II + If (cf. [15]) and
therefore, for any Ct > 0, we have L~f~ L~ + J

Moreover

L~(f, x) - P(f, x) = IX (LIIUJn -f(8» h~(O) d8. (8)
()

Thus, the bounds for LIIU; 8)-f(O) given in [14,15J can be used to
obtain the following estimates:

For any x> 0, 0< et < ~ and n = 1,2, ... we have

IL~(f, x) - P(f, x)1 ~ (l + (H(x; O() )1/2) w(.f; n --1/2), (9)
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for every f E CEo, OCJ) such that P( If I, x) < 00. If, in addition,
.f' E CB[O, 00), we have

ILXf, x) - T~(f, x)1

K(x;a) I"~ l' 1'2
~--II.f'11+ «H(x; a»- + H(x; a» n /'w(f'; n- .. ), (10)

n

where

4x( I + x -a)(1 + x - 2a)
H(x;a) := ,

(1 -ex)(I - 2ex )( I - 3ex )
x(1 + x -ex)

K(x; IX) := .
(l - ex )( I - 2a)

Finally, if f has a second derivative which is measurable and bounded on
(0, CfJ), it can be seen from the Voronovskaja-type theorem for L" due to
Totik [20] and the dominated convergence theorem

lim n{ L~(f, x) - P(f, x)} = f x !"«())( I + ()2 h;«() d(),
n-x 0

whenever x> °and 0< a <!.
In the next two sections we provide further approximation properties for

both L~ and T~. Section 2 is devoted to preservation of Lipschitz constants.
In Section 3 we deal with the property of monotonic convergence under
convexity. In both cases probabilistic methods play an important role.

2. LIPSCHITZ CONSTANTS

Denote by Lip I (A, J1) the set of all real functions on the interval I such
that

If(x) - f(y)\ ~ A Ix - YI I
',

where A > °and J1 E (0, I].

x,YEI,

THEOREM I. Let f he a real uniformly continuous/unction on (0, (0) such
that P(IfI, x) < oc, for all 0 < a < I and x> O. Then, the two following
statements are equivalent:

(a) fE Lip(o.x)(A, J-l).

(b) PfE LiPlo. :xc )(A,.!" J-l), for all a E (0, I), where

A" I' : = A (1 - ex) - I'. ( t 1)

Proof For °< x < y let (U, V) be a two-dimensional random vector
having the density
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T( (1 +y)1a) exi, 1'1 (.\ xli' - 1

h(e,IJ):= e (1+)"T(x/a) T(y-x)/a) r(l/a) (1 + +'1) .\'

where T(.) is the gamma function. It is not hard to see that U (resp.
U + V) has the inverse beta distribution with density h; (resp. h~) and
hence, if f E Lip(o.c<) )(A, /1), we can write, using Jensen's inequality,

1T'(f, x) - T'U: y)1 = l£f(U) - £f(U + V)I

~ £ 1ft V) - f( V + V)j

~A£ IVII'

~ A(£V)"

A
= (l-a)I' (y-x)/',

whenever 0< a < I. This shows (a) implies (b). The converse implication
follows from (5), since P(f, x) -+f(x) (as a -+ 0) for all x> 0.

The proof above uses the "splitting" method due to Khan and Peters
[12]. For an alternative proof, see Remark 3 at the end of the next section.

THEOREM 2. Let f be a real uniformly continuous function on [0, ex;).
Then, the two following statements are equivalent:

(a) fE Lipro. x)(A, ft).

(b) L~fELip[o.'Cl(A,.I"p),for allaE(O, 1) and n=I,2, ... , where
A '. I' is defined in (11).

Proof If fE Lipro. C<J)(A, /1) then L"jE Lipro. wl(A, /1), for all n = 1,2, ...
(cf. [15]). Therefore, L~fELipro.C<)(A,.I',/1), for all IXE(O,I) and
n = 1,2, ..., as follows from (7), Theorem I, and the continuity of L~f As
for the converse implication, it is enough to observe that L~(f, x) -+ f(x)
(as IX -+ °and n -+ 00) for all x ~ 0, as a consequence of (5) and (9).

3. MONOTONIC CONVERGENCE

The main results in this section are the following:

THEOREM 3. Let x> 0 and I >IX l > a2 > 0. If f is a real convex function
on (0, 00) such that P(lfl, x) < 00, for IX = IX., a2, then
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If, in addition, f is nondecreasing, then

T"'(f, x) ~ T"'(f, x).
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(12)

THEOREM 4. Let x> IX I > 1X2 > O. Iff is a real function on (0, 00) such
that f(l/u) is convex and T"( If I, x) < 00, for IX = IX I' 1X2, then

T"(f, x) ~ T'2 (! (::=:: u)' x).
If, in addition, f(l/u) is nondecreasing, then (12) holds true.

Remark 1. In general, (12) does not hold if the nondecreasing charac
ter of the convex function f is dropped. Ta,ke, for instance, f( 8) := - 0,
0> O. Then

IX E (0, 1), x> O.

A more interesting example is the following: Fix x> 0 and I> IX I > IX 2 > O.
For each t ~ 0 let ft be the function defined by

f,(O):=e- lo, 0>0.

We claim that

and

T"'(f" x) < T"2(f" x),

for some r > 0

for some s> O.

In order to see this, observe that, for every IX E (0, I), the function r/J;
defined by

r/J~(t) := T'U" x) = fYJ e 10 dF;(O), t ~ 0,
o

is the Laplace transform of F~, the inverse beta distribution function with
parameters x/rI., l/rI.. By Fubini's theorem, we have

I
OC Ioc I 1d,X(t)e-rdt= -dFX(O)=--,

o '1'" 0 1 +8" I + x
IX E (0, I).

Therefore, the assumption ~:, ~ ~:,' together with the continuity of these
functions, implies ~~I = r/J:, and, from the uniqueness theorem for Laplace
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transforms, we have F~l = F~2' which is obviously false. Similarly, the
assumption ¢J~1 ::::; ¢J~2 leads us to a contradiction. The claim is shown.

Notwithstanding, Theorem 4 above provides a wide class of non
increasing convex functions for which (12) does hold. In fact, iff(l/u) is
convex and nondecreasing on (0, 00) then f is convex and nonincreasing.
The converse is not true (take f(u) :=log(l/u)), but it is easy to see
the following: If.f is a nonincreasing function on (0, 00) which is twice
differentiable and satisfies

2.f'(u) + u.f"(u) ~ 0, u>O,

then f( I/u) is a nondecreasing convex function. The remark is finished.

The proofs of Theorems 3 and 4 are based upon some properties
concerning gamma processes. A stochastic process (V,),;;, 0 starting at the
origin, with stationary, independent increments, such that, for each s > 0,
the density of U, is given by

0> 0,

is called a gamma process. It is clear that a gamma process is continuous
in probability and, therefore, we assume, without loss of generality, that it
has right-continuous paths [3,19].

LEMMA 1. Let (V,),;;, 0 be a stochastic process starting at the origin, with
nonnegative, integrable, stationary, independent increments, having right
continuous paths. For all 0< r::::; s we have

r
E(V, I U,)=- U" a.s.,

s

where E( . I .) denotes conditional expectation.

Proof of Lemma 1. Let s > ° and n = 1,2, .... We can write
U,=L:Z~1 (V(k/nl,-U(k [lin),), as a sum of n integrable, independent,
identically distributed random variables. Therefore (cf. [1])

k
E( U(k/n), I U,) = - U,,,

n
a.s., k = I, ..., n. (13 )

If 0 < r < s, consider a sequence of rational numbers (qn)n;;, 1 converging to
rls and such that 1 ~qn~rls (n~ I). By (13),

a.s., n ~ 1. (14)
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Since (V/)/;;. 0 has right-continuous paths, the conclusion follows from
(14) and the Lebesgue dominated convergence theorem for conditional
expectations.

Let (V/),;;.o and (V,L;;.o be two independent gamma processes defined
on the same probability space. For all x> 0 and t > 0, the random variable
Y; defined by

(15 )

has the inverse beta distribution with parameters xt, t, as is easily checked.
With this notation, we give the following

LEMMA 2. (a) For all 1< r ~ s and x > 0, we have

r s-1
E( Y; I Y;) = - -1 Y:,sr-

(b) If l/x < r ~ s, then

E (1 I yx) _r xs - 11
~ ... ------;,
Y r s xr- 1 Y,

a.s.

a.s.

(16)

(17)

Proof of Lemma 2. Let 1 < r ~ s and x> O. Since the random vectors
(U,,, U,,) and (V" Vs ) are independent we have

a.s., (18 )

where the last equality follows from Lemma 1. On the other hand, the
random variables VsVr- I and V, are independent [11]. Therefore,

E(Vr- I I V,) = V,- IE( V, Vr 1 I V,)

= V; IE( V, V; I)

= Vs-
1(1 +E((V,- Vr) V;I))

=V,I(I+E(V,-Vr)EVr I)

640,06,'1-5

( s-r)
= V,:-l 1+ r _ 1 ' a.s. ( 19)
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From (18) and (19) we have

rs-I
E(Y;IU",VJ=---I Y;,

sr-
a.s. (20)

Thus, statement (a) follows by taking in (20) the conditional expectation
with respect to Y;. Statement (b) is proved in a similar way.

Proof of Theorem 3. Comparing (2) and (15), it is clear that

(21 )

Under the assumptions in Theorem 3, we have from (16), (21), and the
conditional version of Jensen's inequality

T"(f,x)=E(E(f(yXI) I Y'-l))
':X l rt2

~ Ef(E( y' 1 I y' ,))
:II :X2

(
l-iX )=Ef __2 yX,
I - iX 1'2

The conclusion follows.

Proof of Theorem 4. The proof runs along the lines of those of Theorem
3, using (17) instead of (16), and therefore we omit it.

Remark 2. The properties of the operators L~ concerning monotonic
convergence can be summarized as follows: For iX > 0, X ~ 0, and
n = 1, 2, ...,

whenever f is a nonincreasing convex function on [0, (0). (This was shown
in the Introduction.) Moreover, in view of (7) and Theorems 3 and 4
above, we have for a fixed n,

whenever one of the following conditions is fulfilled:

(a) 1> iX I > iX 2 > 0 and Lnf is convex and nondecreasing on (0, ex).

(b) x>ct l >ct2>0 and Ln(f, 1/8) is convex and nondecreasing on
(0, (0).
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Remark 3. Coming back to Theorem 1, an alternative proof for (a)
implies (b) can be supplied by combining the representation given in (21)
and Jensen's inequality. Actually, if f E LiPro. ex: )(A, J1), 0 < or: < 1, and
O<x<y, we have

IP(f, x)- T'(f,Y)1 = IEf(Y:-1)-Ef(Y;-I)1

~ E If( Y;-l) -f( Y;l)i

~AE I Y;--I'I!'

~A(EYY-')!'
-...;::::: :.:-1

A= (y-x)i'.
(1 - IX)!'
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